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Abstract

Let G be a graph and P (G,λ) be the chromatic polynomial of G.
We show that the maximal zero-free intervals for chromatic polynomi-
als are precisely (−∞, 0), (0, 1), (1, 32/27], with chromatic roots being
dense in (32/27,∞).

1 Introduction

Given a finite graph G without loops and multiple edges, P (G,λ) denotes
the chromatic polynomial of G. That is, given a nonnegative integer poly-
nomial λ, P (G,λ) gives the number of ways to color the vertices of G using
λ colors such that no two adjacent vertices share the same color. While the
chromatic polynomial loses its immediate meaning when λ is not an integer,
it is nonetheless interesting to study the roots of P (G,λ).

In order to study the roots of P (G,λ), we first give some basic results of the
chromatic polynomial (as found in [1]). From these, we show that (−∞, 0)
and (0, 1) are zero-free intervals of P (G,λ). Next, we review Jackson’s
paper [2], mentioning some more sophisticated machinery, and give the result
that (1, 32/27] is also a zero-free interval of P (G,λ). Finally, we show as
Thomassen [3] did that chromatic roots are dense in (32/27,∞). Combining
these results gives us that the maximal zero-free intervals for P (G,λ) are
(−∞, 0), (0, 1), (1, 32/27].
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2 Zeroes in (−∞, 1]

It is obvious that any non-empty graph has no 0-colorings, and that any
graph with at least one edge has no 1-colorings. Thus, 0 and 1 are zeroes of
chromatic polynomials of graphs. To show that there are no other zeroes in
the interval (−∞, 1], we must first give some intermediate results of chro-
matic polynomials. If G/e is a contraction of edge e, and G \ e is a deletion
of edge e, then we have

Theorem 1. P (G,λ) = P (G \ e, λ)− P (G/e, λ).

Proof. Given a graph G, consider two vertices i, j with no edge between
them. Any coloring of G falls into one of two categories: either i, j have the
same color or they do not. Let e be an edge formed by connecting i, j. We
can map all colorings where i, j have the same color bijectively to colorings
of G/e. Analogously, we can map all colorings where i, j have different colors
bijectively to colorings of G+ e. Thus, we get that

P (G,λ) = P (G+ e, λ) + P (G/e, λ)

Applying this identity in reverse (substituting G \ e into G) gives us the
desired result.

Note that our proof only immediately gives us a relation between chromatic
polynomials evaluated at a positive integer. However, since two degree n
polynomials are identical if they agree on n+ 1 points, the given expression
holds for the polynomials themselves.

Since G/e,G \ e both have fewer edges than G, we can use the equation
obtained to make recursive or inductive statements about P (G,λ). This
kind of deletion-contraction argument is quite common in graph theory; in
particular, we use it several of the following results:

Lemma 2. The coefficients of the chromatic polynomial alternate in sign.
That is, the coefficient am of λm is ≥ 0 if n ≡ m (mod 2) and ≤ 0 otherwise.

Proof. For an empty graph with n vertices (and in particular, no edges),
P (G,λ) is obviously λn since each vertex can be colored independently.
Here, the result trivially holds.

Now, we induct on the number of edges of a graph. Given a graph G, assume
that the result holds for any graph with < |E(G)| edges. Selecting any edge e
of G, we know the result holds for P (G\e, λ), P (G/e, λ). Applying theorem
1, it is clear that the result holds for P (G,λ) = P (G \ e, λ)−P (G/e, λ).
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Theorem 3. P (G,λ) has no negative real roots.

Proof. Suppose P (G,λ) =
∑n

m=1 amλ
m, where the coefficients alternate

in sign by lemma 2. For λ < 0, then, we know that (−1)namλ
m ≥ 0.

Moreover, an = 1 (this is trivially for a graph with no edges; otherwise, it is
a straightforward application of the deletion-contraction argument). Thus,
for q < 0, (−1)nP (G,λ) > 0, so P (G,λ) has no negative real roots.

Theorem 4. P (G,λ) has no real roots between 0 and 1.

Proof. First, note that P (G,λ) of a disconnected graph is the product of
the chromatic polynomials of each connected component. Since multiply-
ing polynomials does not give us roots that did not appear in the origi-
nal polynomials, it suffices to consider connected graphs. We show that
(−1)nP (G,λ) < 0 for any 0 < q < 1.

Consider any tree; there are λ ways to color an arbitrarily selected root.
There are λ − 1 ways to color each child, since a child can be any color
that is not the parent’s. Thus, we see that for a tree, P (G,λ) = λ(λ −
1)n−1. The statement that (−1)nP (G,λ) < 0 can be easily checked for
trees by binomially expanding P (G,λ). Otherwise, the statement follows
from a deletion-contraction argument, since (−1)n has a different sign from
(−1)n−1, and so for P (G,λ) = P (G \ e, λ)− P (G/e, λ), 0 < λ < 1, we have

(−1)nP (G,λ) = (−1)nP (G \ e, λ) + (−1)n−1P (G/e, λ) < 0

We conclude that P (G,λ) has no real roots between 0 and 1.

Thus, combining theorems 3 and 4, we have the main result of the section:

Result 5. (−∞, 0) and (0, 1) are zero-free intervals for P (G,λ), while 0
and 1 can be roots of P (G,λ).

3 Zeroes in (1, 32
27 ]

In order to prove that (1, 32/27] is a zero-free interval for P (G,λ), Jackson
defines a double subdivision as an operation on an edge ij: construct a new
graph G − ij by adding two new vertices and joining each new vertex to
both i and j. Additionally, he defines a generalized edge (triangle) as either
K2 (K3) or any graph that can be obtained from K2 (K3) by a sequence of
double subdivisions. Given these tools, Jackson proves his main result that
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Result 6. P (G,λ) is non-zero for all λ ∈ (1, 3227 ].

Proof. (Sketch; details omitted for the sake of length) The proof proceeds
by contradiction: suppose there exist G,λ such that P (G,λ) has a zero in
(1, 32/37]. Jackson first shows in [2] that G is a generalized triangle, and
based on several other claims, shows that P (G,λ) ≥ 0. Next, breaking G
down into several possible cases and justifying the upper bound 32/27, he
generously manipulates expressions to prove that P (G,λ) < 0, contradicting
the first result that P (G,λ) ≥ 0. Thus, this gives the result that P (G,λ) is
non-zero for all λ ∈ (1, 32/27].

4 Zeroes in (32
27 ,∞)

It remains to show that zeroes of chromatic polynomials are dense in (32/27,∞).
To do this, we first state a major intermediate result of Thomassen:

Lemma 7. Let λ0, δ be real numbers, λ0 > 1, δ > 0. Assume there exists a
graph G0 having an edge xy such that

|P (G0, λ0)| < (λ0 − 1)|P (G0/e, λ0)|

Assume further that if λ0 > 2, then

P (G0, λ0)P (G0/e, λ0) < 0

Then there exist real numbers λ1, λ2 and a graph H such that

λ0 − δ < λ1 < λ2 < λ2 + δ and P (H,λ1)P (H,λ2) < 0

In particular, P (H,λ) has a root between λ1 and λ2.

Proof. (Details omitted for the sake of length) See [3].

Given this result, we are ready to prove Thomassen’s main result:

Result 8. If λ0 >
32
27 , ε > 0, then there exists a graph G such that P (G,λ)

has a root in (λ0 − ε, λ0 + ε).

Proof. By lemma 7, is is enough to consider a graph G0 with edge e such
that

|P (G0, λ0)| < (λ0 − 1)|P (G0/e, λ0)| (1)
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and (if λ0 > 2),

P (G0, λ0)P (G0/e, λ0) < 0 (2)

If k ∈ N such that 2 ≤ k − 1 < λ0 < k, then we can let G0 be Kk+1.
Otherwise, if λ0 < 2, then we do not need to consider (2). Some algebraic
manipulation shows that the (1) is satisfied when G0 is K3 and 3/2 < λ0 < 2.

To narrow down the range λ0 even more, consider the case where G0 is K2,3.
It is known that

P (K2,3, λ) = λ(λ− 1)(λ3 − 5λ2 + 10λ− 7)

P (K2,3/e, λ) = λ(λ− 1)(λ− 2)2

Given these chromatic polynomials, we can get that (1) is satisfied for
λ0 ∈ [1.36, 3/2) when G0 is K2,3.

It remains to show the result for when λ0 ∈ (32/27, 1.36). Jackson in his
proof of the results in [2] shows that there exists a minimal graph G1 that
is a generalized triangle such that P (G1, λ0) > 0. P (K3, λ0) < 0, so we can
get G1 from some G0 by a double subdivision of an edge e in G0, and by
the minimality of G1, we know P (G0, λ0) < 0. It follows from the definition
of a double subdivision that

0 < P (G1, λ0) = P (G0, λ0)(λ0 − 2)2 + P (G0/e, λ0)(λ0 − 1)2

P (G0, λ0) < 0, so

P (G0/e, λ0)(λ0 − 1)2 > |P (G0, λ0)|(λ0 − 2)2

Since λ0 < (5−
√

5)/2 ≈ 1.38,

P (G0/e, λ0)(λ0 − 1) > |P (G0, λ0)|

With this, we have covered all possible values for λ0, and we are done.

5 The Main Result!

Result 9. The maximal zero-free intervals for chromatic polynomials are
precisely (−∞, 0), (0, 1), (1, 3227 ], with chromatic roots being dense in (3227 ,∞).
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